(PhysOrg.com) -- During the past few years, CERN physicist Dragan Hajdukovic has been investigating what he thinks may be a widely overlooked part of the cosmos: the quantum vacuum. He suggests that the quantum vacuum has a gravitational charge stemming from the gravitational repulsion of virtual particles and antiparticles. Previously, he has theoretically shown that this repulsive gravity can explain several observations, including effects usually attributed to dark matter.
Read More »Tag Archives: the-neutrino
Feed SubscriptionRepulsive gravity as an alternative to dark energy (Part 2: In the quantum vacuum)
(PhysOrg.com) -- During the past few years, CERN physicist Dragan Hajdukovic has been investigating what he thinks may be a widely overlooked part of the cosmos: the quantum vacuum. He suggests that the quantum vacuum has a gravitational charge stemming from the gravitational repulsion of virtual particles and antiparticles. Previously, he has theoretically shown that this repulsive gravity can explain several observations, including effects usually attributed to dark matter.
Read More »Decoding cosmological data could shed light on neutrinos, modified gravity
(PhysOrg.com) -- Todays most powerful telescopes collect huge amounts of data from the most distant locations of the universe yet much of the information is simply discarded because it involves small length scales that are difficult to model. In an effort to waste less data from cosmological surveys, a team of scientists has developed a new technique that allows researchers to use otherwise unusable data by "clipping" some of the highest density peaks, which present the greatest challenge to models. This data could provide a way to address some unsolved problems in physics, including estimating the neutrino mass and investigating theories of modified gravity.
Read More »Physicists propose search for fourth neutrino
(PhysOrg.com) -- Physicists know that neutrinos (and antineutrinos) come in three flavors: electron, muon, and tau. In several experiments, researchers have detected each of the neutrino flavors and even watched them oscillate back and forth between flavors. But starting in the early 90s, some experiments have also revealed a nagging anomaly: muon antineutrinos oscillate into electron antineutrinos at a 3% higher rate than predicted.
Read More »