Home / Spiritual Development News (page 21)

Category Archives: Spiritual Development News

Feed Subscription

A new discovery answers an old question

(PhysOrg.com) -- The transition-metal monoxide FeO is an archetypal example of a Mott insulator—a material that should conduct electricity under conventional band theories but becomes an insulator when measured, especially at low temperatures—and a major iron-bearing component of the Earth’s interior. Understanding the high-pressure behavior of this material is important for both solid-state physics and Earth science.

Read More »

Discovery of ‘bioelectric’ arteries opens path to heart disease treatment

Bionic eyes and limbs made television's six million dollar man an icon, but new research suggests our existing biological structure already exhibits a valuable electrical property. Scientists have found that arteries react curiously to external electric fields, opening the door to minimally invasive detection and treatment of the U.S.'s number one killer -- heart disease.

Read More »

The hidden nanoworld of ice crystals: Revealing the dynamic behavior of quasi-liquid layers

(PhysOrg.com) -- A wide range of phenomena depend on ice – specifically, phase transitions during ice crystal surface melting. In this transition, which occurs near the melting point, the ice surface morphs into what is known as a quasi-liquid layer (QLL) – a thin layer of ice grains where the water molecules are not in rigid solid structure, yet not in the random order of liquid.

Read More »

Quantum physicists shed new light on relation between entanglement and nonlocality

(PhysOrg.com) -- New research from the University of Bristol may disprove a long-standing conjecture made by one of the founders of quantum information science: that quantum states featuring ‘positive partial transpose’, a particular symmetry under time-reversal, can never lead to nonlocality.

Read More »

Resolving controversy at the water’s edge

Water (H2O) has a simple composition, but its dizzyingly interconnected hydrogen-bonded networks make structural characterizations challenging. In particular, the organization of water surfaces—a region critical to processes in cell biology and atmospheric chemistry—has caused profound disagreements among scientists

Read More »

Researchers demonstrate rare combination of electric and magnetic properties in strontium barium manganite

An electric field can displace the cloud of electrons surrounding each atom of a solid. In an effect known as polarization, the cloud centers move away slightly from the positively charged nuclei, which radically changes the optical properties of the solid.

Read More »

Chaos puts a path on nanoparticles

At just over seven feet tall, Shaquille O’Neal is easy to spot in crowd. But the individual virus structures that give him, and us, a cold aren’t so easy to see.

Read More »

Lab team develops capability for atomistic simulations

(PhysOrg.com) -- Conventional scientific wisdom says that the interatomic forces between ions that control high-temperature processes such as melting are insensitive to the heating of the electron "glue" that binds the ions together. In effect, traditional atomistic simulations ignore electron temperature completely.

Read More »

Scientists shed light on magnetic mystery of graphite

The physical property of magnetism has historically been associated with metals such as iron, nickel and cobalt; however, graphite – an organic mineral made up of stacks of individual carbon sheets – has baffled researchers in recent years by showing weak signs of magnetism.

Read More »

Does antimatter weigh more than matter? Lab experiment to find out the answer

Does antimatter behave differently in gravity than matter? Physicists at the University of California, Riverside have set out to determine the answer. Should they find it, it could explain why the universe seems to have no antimatter and why it is expanding at an ever increasing rate.

Read More »

Cosmology in a Petri dish

Scientists have found that micron-size particles which are trapped at fluid interfaces exhibit a collective dynamic that is subject to seemingly unrelated governing laws. These laws show a smooth transitioning from long-ranged cosmological-style gravitational attraction down to short-range attractive and repulsive forces. The study by Johannes Bleibel from the Max Planck Institute for Intelligent Systems in Stuttgart, Germany, and his colleagues has just been published in the European Physical Journal E.

Read More »
Scroll To Top