Home / Tag Archives: physical-review (page 2)

Tag Archives: physical-review

Feed Subscription

Magnetic nanoswitch for thermoelectric voltages

The heat which occurs in tiny computer processors might soon be no longer useless or even a problem. On the contrary: It could be used to switch these processors more easily or to store data more efficiently! These are two of the several potential applications made possible by a discovery made at the Physikalisch-Technische Bundesanstalt (PTB). This so-called "thermoelectric voltage" may well be very interesting – mainly for the use of nano-junctions, i.e.

Read More »

Extreme ultraviolet movies reveal inside story of complex materials

(PhysOrg.com) -- A new X-ray movie technique using extreme ultraviolet (XUV) pulses from Artemis (link opens in a new window), one of the world's most advanced lasers, could help unravel the mysteries of phenomena such as magnetism or high-temperature superconductivity. The results are published in the latest edition of Physical Review Letters.

Read More »

New form of superhard carbon observed

Carbon is the fourth-most-abundant element in the universe and takes on a wide variety of forms, called allotropes, including diamond and graphite. Scientists at Carnegie's Geophysical Laboratory are part of a team that has discovered a new form of carbon, which is capable of withstanding extreme pressure stresses that were previously observed only in diamond. This breakthrough discovery will be published in Physical Review Letters.

Read More »

Physics group corrals record number of neutrons into one place

(PhysOrg.com) -- Neutrons, the particles that along with protons, exist in the nuclei of atoms (except for hydrogen) have been intensely studied ever since their discovery in the 1930’s. And while many interesting developments have occurred as a result (fission reactions, etc) physicists have continued to be frustrated in their attempts to get a closer look at them, due to their not having an electric charge which could be used to hold them in place.

Read More »

New computer model better explains workings of tsunamis

(PhysOrg.com) -- Because they occur so infrequently, more often than not in areas where they aren’t recorded very well, scientists have been working nearly blind in trying to understand how tsunamis work once they reach shore. Now, Frederic Dias from University College in Dublin and his team of mathematical and computer scientists have developed a computer simulation that they believe explains how tsunamis work once they reach shore. They have described their findings in Physical Review Letters.

Read More »

Look ma, no hands: Engineers invent a magnetic fluid pump with no moving parts

(PhysOrg.com) -- Used in Hollywood and the advertising industry to create exotic special effects, ferrofluids are seemingly magical materials that are both liquid and magnetic at once. In a study published today in Physical Review B, Yale electrical engineering professor Hur Koser and colleagues from the University of Georgia and Massachusetts Institute of Technology demonstrate for the first time an approach that allows ferrofluids to be pumped by magnetic fields alone. The invention could lead to new applications for this mysterious material.

Read More »

New record for measurement of atomic lifetime

Researchers at the Niels Bohr Institute have measured the lifetime of an extremely stable energy level of magnesium atoms with great precision. Magnesium atoms are used in research with ultra-precise atomic clocks. The new measurements show a lifetime of 2050 seconds, which corresponds to approximately

Read More »

Research team devises better method for mapping orbitals of molecules

(PhysOrg.com) -- A team of physicists comprised of members from IBM Research in Switzerland and the University of Liverpool in the U.K. have figured out a way to improve on results obtained using a Scanning Tunneling Microscope (STM) that allows for the orbitals of single molecules to be mapped. They have published a paper on Physical Review Letters describing their procedure.

Read More »

The diamond`s quantum memory

For years, quantum computers have been the holy grail of quantum technology. When a normal computer has to solve a number of problems, it can only execute them one after the other. In contrast, a quantum computer could occupy several different states at the same time – and that way it could try out different possible solutions of a problem at once, finding the correct answer much faster than a normal computer ever could.

Read More »

Physicists report progress in understanding high-temperature superconductors

Although high-temperature superconductors are widely used in technologies such as MRI machines, explaining the unusual properties of these materials remains an unsolved problem for theoretical physicists. Major progress in this important field has now been reported by physicists at the University of California, Santa Cruz, in a pair of papers published back-to-back in the July 29 issue of Physical Review Letters.

Read More »

Shining a light on the elusive ‘blackbody’ of energy research

A designer metamaterial has shown it can engineer emitted "blackbody" radiation with an efficiency beyond the natural limits imposed by the material's temperature, a team of researchers led by Boston College physicist Willie Padilla report in the current edition of Physical Review Letters.

Read More »

At small scales, tug-of-war between electrons can lead to magnetism under surprising circumstances

(PhysOrg.com) -- At the smallest scales, magnetism may not work quite the way scientists expected, according to a recent paper in Physical Review Letters by Rafal Oszwaldowski and Igor Zutic of the University at Buffalo and Andre Petukhov of the South Dakota School of Mines and Technology.

Read More »

Einstein’s theory applied to superconducting circuits

In recent years, UC Santa Barbara scientists showed that they could reproduce a basic superconductor using Einstein's general theory of relativity. Now, using the same theory, they have demonstrated that the Josephson junction could be reproduced. The results are explained in a recent issue of the journal Physical Review Letters.

Read More »
Scroll To Top